Further Results on the Decay of ¹⁷⁸Tl

M. W. Rowe*, K. S. Toth†, J. C. Batchelder‡, T.N.Ginter, K. E. Gregorich, F. Q. Guo§, F. P. Hessberger*, V. Ninov, J. Powell, X. J. Xu, and Joseph Cerny§

As reported last year, a 90% enriched 1.05 mg/cm² target of ¹⁰²Pd was bombarded by a 340 MeV beam of 78Kr ions at the 88-Inch Cyclotron to produce ¹⁷⁸Tl with a cross section ~ 40 nb. This resulted in high yields of Hg isotopes, and also Au and Tl isotopes in lower yields. These reaction products were separated from the 78Kr beam in the Berkeley Gas-filled Separator (BGS), passed through two parallel-plate avalanche counters (PPAC's) and were implanted into a positionsensitive silicon strip detector. Chains of known alpha decays observed from the same position on the detector shortly after implantation (<20 s) permitted the reaction products to be positively identified by comparing the energies of the alpha decays to values in the literature. By recording the time intervals between decays, half-lives were also deduced.

Data have been analyzed again to determine the half-lives of short-lived isotopes with the alpha decay rate function:

$$\frac{dN}{dt} = \lambda e^{-(\lambda + R_{EVR} + R_{\alpha})t}$$

and the correlation efficiency equation:

$$\varepsilon_{corr} = \left(\frac{\lambda}{\lambda + R_{EVR} + R_{\alpha}}\right) \left(1 - e^{-\lambda t_{search}}\right)$$

where λ is the decay constant for the alpha decays of interest, and R_{EVR} and R_{α} are the rates of random Evaporation Residues (EVR's) and random α decays, respectively. t_{search} is the maximum correlation search time.

TABLE I. A summary of observed ¹⁷⁸Tl alphadecay transitions. The half-life determined from all four transitions combined is ²⁵⁴₋₉ ms.

Energy	Lit. Energy	Q-Value	Relative	Half-life
(MeV)	(MeV)	(MeV)	intensity	(ms)
6.616(15)		6.768(15)	0.23	224_{-19}^{+25}
6.704(5)	6.71	6.858(5)	1	247^{+14}_{-11}
6.785(5)	6.79	6.940(5)	0.30	273_{-20}^{+26}
6.859(5)	6.87	7.017(5)	0.17	246_{-21}^{+29}

Approximately 1200 alpha decays were observed correlated to 6.538 MeV ¹⁷⁴Au alpha decays, or to the 6.038 MeV alpha particles of its beta-decay daughter, 174Pt [1]. Four transitions, assigned to 178Tl, are resolved, with energies of 6.616(15), 6.704(5), 6.785(5) and 6.859(5) MeV and relative intensities of 23%, 100%, 30% and 17%, respectively. The combined half-life of these transitions is 254^{+11}_{-9} ms (See table I). The half-life of each of the individual transitions agrees with the combined half-life, so it is presumed that these are decays from the ground state of 178Tl to different 174Au states, rather then from 178Tl isomers. If the 6.859 MeV decay proceeds to the ¹⁷⁴Au ground state, the lower limit on the ¹⁷⁸Tl mass excess is -4.61(15) MeV.

Additional information was deduced by examining the entire ¹⁷⁸Tl decay chain. From the ratio of ¹⁷⁸Tl decays correlated to ¹⁷⁴Au vs. ¹⁷⁴Pt decays, a ¹⁷⁴Au alpha decay branch of 90(6)% was calculated. Gold-174 was found to be correlated with 5815 keV decays, but not to the previously reported decays of its daughter, ¹⁷⁰Ir [1]. Based on the systematics of Ir isomers, the new transition is assigned to the ground state of ¹⁷⁰Ir, which implies a mass excess of –23.48(15) MeV.

Footnotes and References

- * Now at Chiron Corporation, Emeryville, California.
- † Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831.
- ‡ UNIRIB, Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831.
- § Department of Chemistry, University of California, Berkeley, California 94720.
- * Gesellschaft Für Schwerionenforschung mbH, Darmstadt, Federal Republic of Germany.
- 1. R. D. Page, et al., Phys. Rev. C 53, 660 (1996), and references cited therein.